Alport syndrome
Application for Treatment
Alport syndrome

Alport syndrome is caused by mutations in COL4A3, COL4A4, and COL4A5, collagen biosynthesis genes. Mutations in any of these genes prevent the proper production or assembly of the type IV collagen network, which is an important structural component of basement membranes in the kidney, inner ear, and eye. Basement membranes are thin, sheet-like structures that separate and support cells in many tissues. When mutations prevent the formation of type IV collagen fibers, the basement membranes of the kidneys are not able to filter waste products from the blood and create urine normally, allowing blood and protein into the urine.

The abnormalities of type IV collagen in kidney basement membranes cause gradual scarring of the kidneys, eventually leading to kidney failure in many people with the disease. Progression of the disease leads to basement membrane thickening and gives a "basket-weave" appearance from splitting of the lamina densa. Single molecule computational studies of type IV collagen molecules have shown changes in the structure and nanomechanical behavior of mutated molecules, notably leading to a bent molecular shape with kinks.


As there is no known cure for the condition, treatments are symptomatic. Patients are advised on how to manage the complications of kidney failure and the proteinuria that develops is often treated with ACE inhibitors.

Once kidney failure has developed, patients are given dialysis or can benefit from a kidney transplant, although this can cause problems. The body may reject the new kidney as it contains normal type IV collagen, which may be recognized as foreign by the immune system.

Gene therapy as a possible treatment option has been discussed.

Treatment on-line cost calculation